On the Inverse Erdős-heilbronn Problem for Restricted Set Addition in Finite Groups

نویسندگان

  • Suren M. Jayasuriya
  • Steven D. Reich
  • Jeffrey P. Wheeler
  • Melvyn B. Nathanson
چکیده

We provide a survey of results concerning both the direct and inverse problems to the Cauchy-Davenport theorem and Erdős-Heilbronn problem in Additive Combinatorics. We formulate a conjecture concerning the inverse Erdős-Heilbronn problem in nonabelian groups. We prove an inverse to the Dias da Silva-Hamidoune Theorem to Z/nZ where n is composite, and we generalize this result for nonabelian groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Erdős-Heilbronn Problem for Finite Groups

Additive Number Theory can be best described as the study of sums of sets of integers. A simple example is given two subsets A and B of a set of integers, what facts can we determine about A + B where A + B := {a + b | a ∈ A and b ∈ B}? We will state a result regarding this example shortly. We note that a very familiar problem in Number Theory, namely Lagrange’s theorem that every nonnegative i...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

An Inverse Theorem for the Restricted Set Addition in Abelian Groups

Let A be a set of k ≥ 5 elements of an Abelian group G in which the order of the smallest nonzero subgroup is larger than 2k − 3. Then the number of different elements of G that can be written in the form a + a′, where a, a′ ∈ A, a 6= a′, is at least 2k − 3, as it has been shown in [21]. Here we prove that the bound is attained if and only if the elements of A form an arithmetic progression in ...

متن کامل

A novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem

Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013